Cremona's table of elliptic curves

Curve 4550z1

4550 = 2 · 52 · 7 · 13



Data for elliptic curve 4550z1

Field Data Notes
Atkin-Lehner 2- 5- 7- 13- Signs for the Atkin-Lehner involutions
Class 4550z Isogeny class
Conductor 4550 Conductor
∏ cp 456 Product of Tamagawa factors cp
deg 36480 Modular degree for the optimal curve
Δ -83101491200000000 = -1 · 219 · 58 · 74 · 132 Discriminant
Eigenvalues 2- -1 5- 7-  1 13- -3  1 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-69888,15557281] [a1,a2,a3,a4,a6]
Generators [-215:4657:1] Generators of the group modulo torsion
j -96643333791265/212739817472 j-invariant
L 4.6983415244259 L(r)(E,1)/r!
Ω 0.3033383319901 Real period
R 0.033966628841218 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 36400cj1 40950co1 4550a1 31850ci1 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations