Cremona's table of elliptic curves

Curve 45570by1

45570 = 2 · 3 · 5 · 72 · 31



Data for elliptic curve 45570by1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7+ 31+ Signs for the Atkin-Lehner involutions
Class 45570by Isogeny class
Conductor 45570 Conductor
∏ cp 105 Product of Tamagawa factors cp
deg 846720 Modular degree for the optimal curve
Δ -12062846092500000 = -1 · 25 · 33 · 57 · 78 · 31 Discriminant
Eigenvalues 2- 3+ 5- 7+  3  0  0 -3 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-2162665,1223252855] [a1,a2,a3,a4,a6]
Generators [853:-182:1] Generators of the group modulo torsion
j -194047101462158161/2092500000 j-invariant
L 8.8861380037543 L(r)(E,1)/r!
Ω 0.36349292485978 Real period
R 0.23282402479432 Regulator
r 1 Rank of the group of rational points
S 0.99999999999911 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 45570cx1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations