Cremona's table of elliptic curves

Curve 45675u3

45675 = 32 · 52 · 7 · 29



Data for elliptic curve 45675u3

Field Data Notes
Atkin-Lehner 3- 5+ 7- 29+ Signs for the Atkin-Lehner involutions
Class 45675u Isogeny class
Conductor 45675 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -22839816436171875 = -1 · 310 · 57 · 7 · 294 Discriminant
Eigenvalues -1 3- 5+ 7-  4 -2  6 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,6520,-7269978] [a1,a2,a3,a4,a6]
Generators [2262:31965:8] Generators of the group modulo torsion
j 2691419471/2005141635 j-invariant
L 4.1322814153246 L(r)(E,1)/r!
Ω 0.17759641107253 Real period
R 5.8169551264517 Regulator
r 1 Rank of the group of rational points
S 1.0000000000033 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 15225d4 9135g4 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations