Cremona's table of elliptic curves

Curve 45936z1

45936 = 24 · 32 · 11 · 29



Data for elliptic curve 45936z1

Field Data Notes
Atkin-Lehner 2- 3+ 11+ 29- Signs for the Atkin-Lehner involutions
Class 45936z Isogeny class
Conductor 45936 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 46080 Modular degree for the optimal curve
Δ 495173910528 = 214 · 33 · 113 · 292 Discriminant
Eigenvalues 2- 3+  2  2 11+ -4 -2 -6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2259,23698] [a1,a2,a3,a4,a6]
Generators [-46:174:1] Generators of the group modulo torsion
j 11527859979/4477484 j-invariant
L 7.0157759600533 L(r)(E,1)/r!
Ω 0.84787881928258 Real period
R 2.0686257872243 Regulator
r 1 Rank of the group of rational points
S 1.0000000000024 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 5742d1 45936ba1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations