Cremona's table of elliptic curves

Curve 46314bb1

46314 = 2 · 32 · 31 · 83



Data for elliptic curve 46314bb1

Field Data Notes
Atkin-Lehner 2- 3- 31+ 83- Signs for the Atkin-Lehner involutions
Class 46314bb Isogeny class
Conductor 46314 Conductor
∏ cp 144 Product of Tamagawa factors cp
deg 122112 Modular degree for the optimal curve
Δ -45728840024064 = -1 · 218 · 37 · 312 · 83 Discriminant
Eigenvalues 2- 3- -1  0 -3 -4 -4 -5 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,7717,192395] [a1,a2,a3,a4,a6]
Generators [-21:154:1] [139:1914:1] Generators of the group modulo torsion
j 69725950582679/62728175616 j-invariant
L 12.557898076689 L(r)(E,1)/r!
Ω 0.41661968273953 Real period
R 0.20932190471443 Regulator
r 2 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 15438d1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations