Cremona's table of elliptic curves

Curve 46530o1

46530 = 2 · 32 · 5 · 11 · 47



Data for elliptic curve 46530o1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 11- 47+ Signs for the Atkin-Lehner involutions
Class 46530o Isogeny class
Conductor 46530 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 76032 Modular degree for the optimal curve
Δ 895497768000 = 26 · 39 · 53 · 112 · 47 Discriminant
Eigenvalues 2- 3+ 5+  4 11- -2 -2 -2 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-2513,17281] [a1,a2,a3,a4,a6]
Generators [-37:260:1] Generators of the group modulo torsion
j 89134915563/45496000 j-invariant
L 9.9905552418034 L(r)(E,1)/r!
Ω 0.78224426917789 Real period
R 2.1286094458117 Regulator
r 1 Rank of the group of rational points
S 0.99999999999788 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 46530e1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations