Cremona's table of elliptic curves

Curve 46827j1

46827 = 32 · 112 · 43



Data for elliptic curve 46827j1

Field Data Notes
Atkin-Lehner 3+ 11- 43- Signs for the Atkin-Lehner involutions
Class 46827j Isogeny class
Conductor 46827 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 1393920 Modular degree for the optimal curve
Δ -7801348605382827 = -1 · 39 · 118 · 432 Discriminant
Eigenvalues -2 3+  0 -1 11-  6  0  7 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-9163935,10677538550] [a1,a2,a3,a4,a6]
Generators [1815:4900:1] Generators of the group modulo torsion
j -20171441664000/1849 j-invariant
L 3.0383527820986 L(r)(E,1)/r!
Ω 0.31919304024793 Real period
R 0.79323805111413 Regulator
r 1 Rank of the group of rational points
S 0.99999999999774 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 46827i1 46827c1 Quadratic twists by: -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations