Cremona's table of elliptic curves

Curve 46893f1

46893 = 3 · 72 · 11 · 29



Data for elliptic curve 46893f1

Field Data Notes
Atkin-Lehner 3+ 7- 11- 29+ Signs for the Atkin-Lehner involutions
Class 46893f Isogeny class
Conductor 46893 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 372736 Modular degree for the optimal curve
Δ -4471895084698503 = -1 · 32 · 79 · 114 · 292 Discriminant
Eigenvalues  1 3+ -4 7- 11-  4 -4  0 Hecke eigenvalues for primes up to 20
Equation [1,1,0,40253,-813560] [a1,a2,a3,a4,a6]
Generators [196:3730:1] Generators of the group modulo torsion
j 178738971137/110817729 j-invariant
L 3.5632543608513 L(r)(E,1)/r!
Ω 0.25154192192471 Real period
R 1.7707060186801 Regulator
r 1 Rank of the group of rational points
S 1.0000000000089 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 46893o1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations