Cremona's table of elliptic curves

Curve 47040ef1

47040 = 26 · 3 · 5 · 72



Data for elliptic curve 47040ef1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 7- Signs for the Atkin-Lehner involutions
Class 47040ef Isogeny class
Conductor 47040 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 1474560 Modular degree for the optimal curve
Δ 3922370600400000000 = 210 · 35 · 58 · 79 Discriminant
Eigenvalues 2- 3+ 5+ 7-  0  6  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-5486301,-4943406915] [a1,a2,a3,a4,a6]
Generators [1567170974526883:-153319489113266336:154249367147] Generators of the group modulo torsion
j 151591373397612544/32558203125 j-invariant
L 4.7127052161209 L(r)(E,1)/r!
Ω 0.098647307869093 Real period
R 23.886638763588 Regulator
r 1 Rank of the group of rational points
S 0.99999999999615 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 47040ch1 11760bg1 6720cl1 Quadratic twists by: -4 8 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations