Cremona's table of elliptic curves

Curve 47880m3

47880 = 23 · 32 · 5 · 7 · 19



Data for elliptic curve 47880m3

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7- 19+ Signs for the Atkin-Lehner involutions
Class 47880m Isogeny class
Conductor 47880 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 781894242544665600 = 210 · 314 · 52 · 72 · 194 Discriminant
Eigenvalues 2+ 3- 5+ 7- -4  6 -2 19+ Hecke eigenvalues for primes up to 20
Equation [0,0,0,-322923,56381078] [a1,a2,a3,a4,a6]
Generators [542:6370:1] Generators of the group modulo torsion
j 4988766332702884/1047419199225 j-invariant
L 5.8585188404475 L(r)(E,1)/r!
Ω 0.26802781488591 Real period
R 5.4644690915075 Regulator
r 1 Rank of the group of rational points
S 1.0000000000024 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 95760x3 15960m3 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations