Cremona's table of elliptic curves

Curve 48450h1

48450 = 2 · 3 · 52 · 17 · 19



Data for elliptic curve 48450h1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 17- 19+ Signs for the Atkin-Lehner involutions
Class 48450h Isogeny class
Conductor 48450 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 221184 Modular degree for the optimal curve
Δ -142326720000000 = -1 · 212 · 34 · 57 · 172 · 19 Discriminant
Eigenvalues 2+ 3+ 5+  4  4  2 17- 19+ Hecke eigenvalues for primes up to 20
Equation [1,1,0,9500,-446000] [a1,a2,a3,a4,a6]
j 6067406185919/9108910080 j-invariant
L 2.460139409229 L(r)(E,1)/r!
Ω 0.30751742615152 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 9690v1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations