Cremona's table of elliptic curves

Curve 4851j4

4851 = 32 · 72 · 11



Data for elliptic curve 4851j4

Field Data Notes
Atkin-Lehner 3- 7- 11+ Signs for the Atkin-Lehner involutions
Class 4851j Isogeny class
Conductor 4851 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ -501375964213971 = -1 · 318 · 76 · 11 Discriminant
Eigenvalues -1 3- -2 7- 11+  2 -2  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,19174,336116] [a1,a2,a3,a4,a6]
Generators [-5:492:1] Generators of the group modulo torsion
j 9090072503/5845851 j-invariant
L 1.9825722734783 L(r)(E,1)/r!
Ω 0.32616554422237 Real period
R 3.0392116957127 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 77616gn3 1617j4 121275de3 99b4 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations