Cremona's table of elliptic curves

Curve 48552bc1

48552 = 23 · 3 · 7 · 172



Data for elliptic curve 48552bc1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 17+ Signs for the Atkin-Lehner involutions
Class 48552bc Isogeny class
Conductor 48552 Conductor
∏ cp 64 Product of Tamagawa factors cp
deg 110592 Modular degree for the optimal curve
Δ -59561479063296 = -1 · 28 · 34 · 7 · 177 Discriminant
Eigenvalues 2- 3- -2 7+  4  2 17+ -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,7996,-246624] [a1,a2,a3,a4,a6]
Generators [910:27594:1] Generators of the group modulo torsion
j 9148592/9639 j-invariant
L 6.6294956082197 L(r)(E,1)/r!
Ω 0.33844184297857 Real period
R 4.897071495257 Regulator
r 1 Rank of the group of rational points
S 1.0000000000014 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 97104h1 2856f1 Quadratic twists by: -4 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations