Cremona's table of elliptic curves

Curve 48552j1

48552 = 23 · 3 · 7 · 172



Data for elliptic curve 48552j1

Field Data Notes
Atkin-Lehner 2+ 3+ 7- 17+ Signs for the Atkin-Lehner involutions
Class 48552j Isogeny class
Conductor 48552 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 470016 Modular degree for the optimal curve
Δ -154919407043632896 = -1 · 28 · 36 · 7 · 179 Discriminant
Eigenvalues 2+ 3+ -2 7-  2 -2 17+ -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-165404,-32023116] [a1,a2,a3,a4,a6]
j -16484816/5103 j-invariant
L 0.2330395578235 L(r)(E,1)/r!
Ω 0.11651977856339 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 97104t1 48552o1 Quadratic twists by: -4 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations