Cremona's table of elliptic curves

Curve 48672bn2

48672 = 25 · 32 · 132



Data for elliptic curve 48672bn2

Field Data Notes
Atkin-Lehner 2- 3- 13+ Signs for the Atkin-Lehner involutions
Class 48672bn Isogeny class
Conductor 48672 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 7307276643643392 = 212 · 37 · 138 Discriminant
Eigenvalues 2- 3-  0 -2  0 13+ -2  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-50700,-1546688] [a1,a2,a3,a4,a6]
Generators [-91:1521:1] Generators of the group modulo torsion
j 1000000/507 j-invariant
L 4.8880353999235 L(r)(E,1)/r!
Ω 0.335690552166 Real period
R 1.8201418569726 Regulator
r 1 Rank of the group of rational points
S 1.0000000000047 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 48672bm2 97344ep1 16224i2 3744e2 Quadratic twists by: -4 8 -3 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations