Cremona's table of elliptic curves

Curve 48720bt1

48720 = 24 · 3 · 5 · 7 · 29



Data for elliptic curve 48720bt1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7- 29+ Signs for the Atkin-Lehner involutions
Class 48720bt Isogeny class
Conductor 48720 Conductor
∏ cp 224 Product of Tamagawa factors cp
deg 32901120 Modular degree for the optimal curve
Δ 2.7905352775036E+26 Discriminant
Eigenvalues 2- 3+ 5- 7-  4  4 -6  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1794380840,29245900083312] [a1,a2,a3,a4,a6]
j 155993906575104092056816286761/68128302673428480000000 j-invariant
L 3.0275309209923 L(r)(E,1)/r!
Ω 0.054063052166811 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 6090o1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations