Cremona's table of elliptic curves

Curve 48760a1

48760 = 23 · 5 · 23 · 53



Data for elliptic curve 48760a1

Field Data Notes
Atkin-Lehner 2- 5+ 23- 53- Signs for the Atkin-Lehner involutions
Class 48760a Isogeny class
Conductor 48760 Conductor
∏ cp 56 Product of Tamagawa factors cp
deg 335104 Modular degree for the optimal curve
Δ -3825661872249200 = -1 · 24 · 52 · 237 · 532 Discriminant
Eigenvalues 2- -1 5+ -4  2  1 -8 -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-147976,22160201] [a1,a2,a3,a4,a6]
Generators [-424:2915:1] [196:805:1] Generators of the group modulo torsion
j -22396518591041046784/239103867015575 j-invariant
L 6.6013363467775 L(r)(E,1)/r!
Ω 0.44351246931092 Real period
R 0.26578960987412 Regulator
r 2 Rank of the group of rational points
S 0.99999999999998 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 97520a1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations