Cremona's table of elliptic curves

Curve 49590p2

49590 = 2 · 32 · 5 · 19 · 29



Data for elliptic curve 49590p2

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 19+ 29- Signs for the Atkin-Lehner involutions
Class 49590p Isogeny class
Conductor 49590 Conductor
∏ cp 20 Product of Tamagawa factors cp
Δ -1110725588991914370 = -1 · 2 · 37 · 5 · 195 · 295 Discriminant
Eigenvalues 2+ 3- 5+  3  3  4  2 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,0,190575,39268071] [a1,a2,a3,a4,a6]
Generators [591:18627:1] Generators of the group modulo torsion
j 1050008191740169199/1523629065832530 j-invariant
L 5.3397351843417 L(r)(E,1)/r!
Ω 0.18655932605314 Real period
R 1.4311091536641 Regulator
r 1 Rank of the group of rational points
S 1.0000000000039 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 16530ba2 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations