Cremona's table of elliptic curves

Curve 49995d6

49995 = 32 · 5 · 11 · 101



Data for elliptic curve 49995d6

Field Data Notes
Atkin-Lehner 3- 5+ 11- 101+ Signs for the Atkin-Lehner involutions
Class 49995d Isogeny class
Conductor 49995 Conductor
∏ cp 128 Product of Tamagawa factors cp
Δ 1.7155044199273E+24 Discriminant
Eigenvalues  1 3- 5+  0 11- -2 -2  4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-30252375,11441138800] [a1,a2,a3,a4,a6]
Generators [26907310:49333437895:8] Generators of the group modulo torsion
j 4200244940347331632038001/2353229656964803235025 j-invariant
L 5.8136330865863 L(r)(E,1)/r!
Ω 0.072553788470766 Real period
R 10.016074296594 Regulator
r 1 Rank of the group of rational points
S 1.000000000001 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 16665b5 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations