Cremona's table of elliptic curves

Curve 50400d2

50400 = 25 · 32 · 52 · 7



Data for elliptic curve 50400d2

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 7+ Signs for the Atkin-Lehner involutions
Class 50400d Isogeny class
Conductor 50400 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 84672000000 = 212 · 33 · 56 · 72 Discriminant
Eigenvalues 2+ 3+ 5+ 7+ -4 -2  4  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-19500,1048000] [a1,a2,a3,a4,a6]
Generators [86:-84:1] Generators of the group modulo torsion
j 474552000/49 j-invariant
L 5.2052611035231 L(r)(E,1)/r!
Ω 1.0343353646182 Real period
R 0.62905867883267 Regulator
r 1 Rank of the group of rational points
S 1.0000000000058 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 50400j2 100800iz1 50400cf2 2016j2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations