Cremona's table of elliptic curves

Curve 50460c1

50460 = 22 · 3 · 5 · 292



Data for elliptic curve 50460c1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 29- Signs for the Atkin-Lehner involutions
Class 50460c Isogeny class
Conductor 50460 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 5950800 Modular degree for the optimal curve
Δ -4.8623951339809E+20 Discriminant
Eigenvalues 2- 3+ 5+  3  0 -6  4 -7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-76548941,257812256505] [a1,a2,a3,a4,a6]
Generators [135921:70750:27] Generators of the group modulo torsion
j -387362281529344/3796875 j-invariant
L 4.7955358350913 L(r)(E,1)/r!
Ω 0.14980007588512 Real period
R 5.3354844301227 Regulator
r 1 Rank of the group of rational points
S 0.99999999999868 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 50460k1 Quadratic twists by: 29


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations