Cremona's table of elliptic curves

Curve 5082q1

5082 = 2 · 3 · 7 · 112



Data for elliptic curve 5082q1

Field Data Notes
Atkin-Lehner 2- 3+ 7+ 11- Signs for the Atkin-Lehner involutions
Class 5082q Isogeny class
Conductor 5082 Conductor
∏ cp 80 Product of Tamagawa factors cp
deg 3840 Modular degree for the optimal curve
Δ -55953063936 = -1 · 220 · 32 · 72 · 112 Discriminant
Eigenvalues 2- 3+  1 7+ 11-  1 -3 -2 Hecke eigenvalues for primes up to 20
Equation [1,1,1,630,9879] [a1,a2,a3,a4,a6]
Generators [73:-709:1] Generators of the group modulo torsion
j 228516153239/462422016 j-invariant
L 5.0014331591821 L(r)(E,1)/r!
Ω 0.77186361837032 Real period
R 0.080996063296484 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 40656dc1 15246k1 127050dj1 35574db1 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations