Cremona's table of elliptic curves

Curve 50985h3

50985 = 32 · 5 · 11 · 103



Data for elliptic curve 50985h3

Field Data Notes
Atkin-Lehner 3- 5- 11+ 103+ Signs for the Atkin-Lehner involutions
Class 50985h Isogeny class
Conductor 50985 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 14605975202081175 = 318 · 52 · 114 · 103 Discriminant
Eigenvalues  1 3- 5- -4 11+ -2 -2 -8 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-140139,-19302030] [a1,a2,a3,a4,a6]
Generators [-15596:44703:64] Generators of the group modulo torsion
j 417517774988138929/20035631278575 j-invariant
L 4.9203857126148 L(r)(E,1)/r!
Ω 0.24748558941873 Real period
R 4.9703759764389 Regulator
r 1 Rank of the group of rational points
S 0.99999999999354 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 16995f4 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations