Cremona's table of elliptic curves

Curve 51282br1

51282 = 2 · 32 · 7 · 11 · 37



Data for elliptic curve 51282br1

Field Data Notes
Atkin-Lehner 2- 3- 7- 11- 37+ Signs for the Atkin-Lehner involutions
Class 51282br Isogeny class
Conductor 51282 Conductor
∏ cp 96 Product of Tamagawa factors cp
deg 110592 Modular degree for the optimal curve
Δ -2891871569664 = -1 · 28 · 37 · 73 · 11 · 372 Discriminant
Eigenvalues 2- 3-  2 7- 11- -6  0  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,346,-81867] [a1,a2,a3,a4,a6]
Generators [77:591:1] Generators of the group modulo torsion
j 6300872423/3966902016 j-invariant
L 11.14922023204 L(r)(E,1)/r!
Ω 0.37554861986792 Real period
R 1.2369925448376 Regulator
r 1 Rank of the group of rational points
S 1.0000000000022 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 17094f1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations