Cremona's table of elliptic curves

Curve 51600du1

51600 = 24 · 3 · 52 · 43



Data for elliptic curve 51600du1

Field Data Notes
Atkin-Lehner 2- 3- 5- 43- Signs for the Atkin-Lehner involutions
Class 51600du Isogeny class
Conductor 51600 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 1253376 Modular degree for the optimal curve
Δ -3.063679199635E+19 Discriminant
Eigenvalues 2- 3- 5-  0  4  2  0  2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-3489448,-2524156492] [a1,a2,a3,a4,a6]
Generators [8277451577:-4363081980798:29791] Generators of the group modulo torsion
j -9177493130077937309/59837484367872 j-invariant
L 8.2074973287173 L(r)(E,1)/r!
Ω 0.055209163394447 Real period
R 18.582733427184 Regulator
r 1 Rank of the group of rational points
S 0.99999999999298 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 6450f1 51600cd1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations