Cremona's table of elliptic curves

Curve 51984cu1

51984 = 24 · 32 · 192



Data for elliptic curve 51984cu1

Field Data Notes
Atkin-Lehner 2- 3- 19- Signs for the Atkin-Lehner involutions
Class 51984cu Isogeny class
Conductor 51984 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 276480 Modular degree for the optimal curve
Δ -1501361274772224 = -1 · 28 · 38 · 197 Discriminant
Eigenvalues 2- 3-  3 -1 -5  6  5 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,8664,-1838212] [a1,a2,a3,a4,a6]
j 8192/171 j-invariant
L 3.7098247438311 L(r)(E,1)/r!
Ω 0.23186404647382 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 12996p1 17328w1 2736p1 Quadratic twists by: -4 -3 -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations