Cremona's table of elliptic curves

Curve 52080bp2

52080 = 24 · 3 · 5 · 7 · 31



Data for elliptic curve 52080bp2

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7- 31- Signs for the Atkin-Lehner involutions
Class 52080bp Isogeny class
Conductor 52080 Conductor
∏ cp 256 Product of Tamagawa factors cp
Δ 620076872540160000 = 216 · 38 · 54 · 74 · 312 Discriminant
Eigenvalues 2- 3+ 5- 7- -4 -2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-812320,-278969600] [a1,a2,a3,a4,a6]
Generators [-528:1568:1] Generators of the group modulo torsion
j 14472572604746971681/151385955210000 j-invariant
L 4.7116954738802 L(r)(E,1)/r!
Ω 0.15912635503119 Real period
R 1.8506109000934 Regulator
r 1 Rank of the group of rational points
S 1.0000000000158 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 6510z2 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations