Cremona's table of elliptic curves

Curve 53200dl1

53200 = 24 · 52 · 7 · 19



Data for elliptic curve 53200dl1

Field Data Notes
Atkin-Lehner 2- 5- 7+ 19- Signs for the Atkin-Lehner involutions
Class 53200dl Isogeny class
Conductor 53200 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 15360 Modular degree for the optimal curve
Δ 340480000 = 212 · 54 · 7 · 19 Discriminant
Eigenvalues 2-  1 5- 7+ -3 -1 -6 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-208,-812] [a1,a2,a3,a4,a6]
Generators [-12:10:1] [-6:16:1] Generators of the group modulo torsion
j 390625/133 j-invariant
L 10.616831733335 L(r)(E,1)/r!
Ω 1.2913349208472 Real period
R 0.685132852442 Regulator
r 2 Rank of the group of rational points
S 0.99999999999992 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 3325i1 53200cu1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations