Cremona's table of elliptic curves

Curve 53235s1

53235 = 32 · 5 · 7 · 132



Data for elliptic curve 53235s1

Field Data Notes
Atkin-Lehner 3- 5+ 7- 13+ Signs for the Atkin-Lehner involutions
Class 53235s Isogeny class
Conductor 53235 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 645120 Modular degree for the optimal curve
Δ 854742638945118105 = 311 · 5 · 7 · 1310 Discriminant
Eigenvalues  1 3- 5+ 7-  0 13+ -2  4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-355185,68351440] [a1,a2,a3,a4,a6]
Generators [56768:13496348:1] Generators of the group modulo torsion
j 1408317602329/242911305 j-invariant
L 6.3451860096445 L(r)(E,1)/r!
Ω 0.26830332017927 Real period
R 5.9123252792849 Regulator
r 1 Rank of the group of rational points
S 0.99999999999946 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 17745i1 4095l1 Quadratic twists by: -3 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations