Cremona's table of elliptic curves

Curve 53312s1

53312 = 26 · 72 · 17



Data for elliptic curve 53312s1

Field Data Notes
Atkin-Lehner 2+ 7- 17- Signs for the Atkin-Lehner involutions
Class 53312s Isogeny class
Conductor 53312 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 73728 Modular degree for the optimal curve
Δ -14680306221056 = -1 · 220 · 77 · 17 Discriminant
Eigenvalues 2+  0 -2 7-  2  0 17- -2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,5684,-82320] [a1,a2,a3,a4,a6]
Generators [2062:93696:1] Generators of the group modulo torsion
j 658503/476 j-invariant
L 4.1209047615902 L(r)(E,1)/r!
Ω 0.39454624780238 Real period
R 5.2223342441938 Regulator
r 1 Rank of the group of rational points
S 0.9999999999896 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 53312bx1 1666d1 7616a1 Quadratic twists by: -4 8 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations