Cremona's table of elliptic curves

Curve 53856be1

53856 = 25 · 32 · 11 · 17



Data for elliptic curve 53856be1

Field Data Notes
Atkin-Lehner 2- 3- 11- 17- Signs for the Atkin-Lehner involutions
Class 53856be Isogeny class
Conductor 53856 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 13824 Modular degree for the optimal curve
Δ -558379008 = -1 · 212 · 36 · 11 · 17 Discriminant
Eigenvalues 2- 3- -2  1 11- -6 17-  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,24,-1136] [a1,a2,a3,a4,a6]
Generators [32:180:1] Generators of the group modulo torsion
j 512/187 j-invariant
L 4.6842474986466 L(r)(E,1)/r!
Ω 0.76875139951445 Real period
R 1.52332974666 Regulator
r 1 Rank of the group of rational points
S 0.9999999999955 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 53856k1 107712bj1 5984a1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations