Cremona's table of elliptic curves

Curve 54080ct2

54080 = 26 · 5 · 132



Data for elliptic curve 54080ct2

Field Data Notes
Atkin-Lehner 2- 5- 13+ Signs for the Atkin-Lehner involutions
Class 54080ct Isogeny class
Conductor 54080 Conductor
∏ cp 2 Product of Tamagawa factors cp
Δ -6.2085945252101E+27 Discriminant
Eigenvalues 2-  0 5- -3  3 13+ -4 -7 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-832039052,9985328195856] [a1,a2,a3,a4,a6]
Generators [31523357439989216343792287304043229395:3214722847333973509109177437735098300499:1148064154683840820949835862300031] Generators of the group modulo torsion
j -1762712152495281/171798691840 j-invariant
L 5.0525536117275 L(r)(E,1)/r!
Ω 0.041397822779415 Real period
R 61.02438815019 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 54080be2 13520o2 54080by2 Quadratic twists by: -4 8 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations