Cremona's table of elliptic curves

Curve 54390cp4

54390 = 2 · 3 · 5 · 72 · 37



Data for elliptic curve 54390cp4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7- 37- Signs for the Atkin-Lehner involutions
Class 54390cp Isogeny class
Conductor 54390 Conductor
∏ cp 4 Product of Tamagawa factors cp
Δ 752827610862390 = 2 · 3 · 5 · 714 · 37 Discriminant
Eigenvalues 2- 3- 5+ 7-  0  2 -2  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-292531,-60908485] [a1,a2,a3,a4,a6]
Generators [-211960232:29220427:681472] Generators of the group modulo torsion
j 23531588875176481/6398929110 j-invariant
L 11.00617204306 L(r)(E,1)/r!
Ω 0.20528804557055 Real period
R 13.403328007261 Regulator
r 1 Rank of the group of rational points
S 4.0000000000198 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 7770r4 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations