Cremona's table of elliptic curves

Curve 55233n1

55233 = 32 · 17 · 192



Data for elliptic curve 55233n1

Field Data Notes
Atkin-Lehner 3- 17- 19+ Signs for the Atkin-Lehner involutions
Class 55233n Isogeny class
Conductor 55233 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 4875552 Modular degree for the optimal curve
Δ -1.0775486868527E+22 Discriminant
Eigenvalues  2 3-  2  0  3  3 17- 19+ Hecke eigenvalues for primes up to 20
Equation [0,0,1,-14959479,22823279631] [a1,a2,a3,a4,a6]
Generators [-289718132:15790064603:85184] Generators of the group modulo torsion
j -29903139131392/870323211 j-invariant
L 15.72751067486 L(r)(E,1)/r!
Ω 0.12765011771061 Real period
R 10.267330050886 Regulator
r 1 Rank of the group of rational points
S 1.0000000000018 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 18411l1 55233t1 Quadratic twists by: -3 -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations