Cremona's table of elliptic curves

Curve 55575bc1

55575 = 32 · 52 · 13 · 19



Data for elliptic curve 55575bc1

Field Data Notes
Atkin-Lehner 3- 5- 13+ 19- Signs for the Atkin-Lehner involutions
Class 55575bc Isogeny class
Conductor 55575 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 261120 Modular degree for the optimal curve
Δ -3332923927734375 = -1 · 312 · 59 · 132 · 19 Discriminant
Eigenvalues -1 3- 5-  2  0 13+ -6 19- Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-131180,-18464178] [a1,a2,a3,a4,a6]
j -175333911173/2340819 j-invariant
L 0.5013233344475 L(r)(E,1)/r!
Ω 0.12533083346168 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 18525i1 55575bg1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations