Cremona's table of elliptic curves

Curve 56350bu1

56350 = 2 · 52 · 72 · 23



Data for elliptic curve 56350bu1

Field Data Notes
Atkin-Lehner 2- 5- 7- 23+ Signs for the Atkin-Lehner involutions
Class 56350bu Isogeny class
Conductor 56350 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 1935360 Modular degree for the optimal curve
Δ -9.2097546064216E+20 Discriminant
Eigenvalues 2-  0 5- 7-  4  3  1  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,328070,-1458388053] [a1,a2,a3,a4,a6]
j 84972077055/20040095362 j-invariant
L 4.7354817458488 L(r)(E,1)/r!
Ω 0.073991902283538 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 16 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 56350l1 8050r1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations