Cremona's table of elliptic curves

Curve 56400bw1

56400 = 24 · 3 · 52 · 47



Data for elliptic curve 56400bw1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 47- Signs for the Atkin-Lehner involutions
Class 56400bw Isogeny class
Conductor 56400 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 122880 Modular degree for the optimal curve
Δ -6930432000000 = -1 · 220 · 32 · 56 · 47 Discriminant
Eigenvalues 2- 3+ 5+ -4  0  2  6 -6 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-6008,-217488] [a1,a2,a3,a4,a6]
Generators [98:354:1] Generators of the group modulo torsion
j -374805361/108288 j-invariant
L 3.9869515566254 L(r)(E,1)/r!
Ω 0.26714198464388 Real period
R 3.7311165840504 Regulator
r 1 Rank of the group of rational points
S 0.9999999999553 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 7050g1 2256n1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations