Cremona's table of elliptic curves

Curve 5775p3

5775 = 3 · 52 · 7 · 11



Data for elliptic curve 5775p3

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 11+ Signs for the Atkin-Lehner involutions
Class 5775p Isogeny class
Conductor 5775 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 205974849609375 = 3 · 59 · 74 · 114 Discriminant
Eigenvalues -1 3- 5+ 7+ 11+  2 -6  4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-53088,-4661583] [a1,a2,a3,a4,a6]
j 1058993490188089/13182390375 j-invariant
L 1.2590337316041 L(r)(E,1)/r!
Ω 0.31475843290102 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 92400en4 17325p3 1155c3 40425l4 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations