Cremona's table of elliptic curves

Curve 58719d1

58719 = 3 · 232 · 37



Data for elliptic curve 58719d1

Field Data Notes
Atkin-Lehner 3- 23- 37+ Signs for the Atkin-Lehner involutions
Class 58719d Isogeny class
Conductor 58719 Conductor
∏ cp 36 Product of Tamagawa factors cp
deg 94464 Modular degree for the optimal curve
Δ -279281597841 = -1 · 36 · 234 · 372 Discriminant
Eigenvalues  1 3- -3  0  4 -5  6 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-8740,-316225] [a1,a2,a3,a4,a6]
Generators [205:-2656:1] Generators of the group modulo torsion
j -263800268953/998001 j-invariant
L 6.6278822279242 L(r)(E,1)/r!
Ω 0.24683077577649 Real period
R 0.74588688984569 Regulator
r 1 Rank of the group of rational points
S 1.0000000000132 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 58719f1 Quadratic twists by: -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations