Cremona's table of elliptic curves

Curve 6030s1

6030 = 2 · 32 · 5 · 67



Data for elliptic curve 6030s1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 67+ Signs for the Atkin-Lehner involutions
Class 6030s Isogeny class
Conductor 6030 Conductor
∏ cp 48 Product of Tamagawa factors cp
deg 7680 Modular degree for the optimal curve
Δ 474753960000 = 26 · 311 · 54 · 67 Discriminant
Eigenvalues 2- 3- 5+ -2  4  0 -2 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-2453,33581] [a1,a2,a3,a4,a6]
Generators [3:160:1] Generators of the group modulo torsion
j 2238323410441/651240000 j-invariant
L 5.4328149016992 L(r)(E,1)/r!
Ω 0.86853307347609 Real period
R 0.52126348318509 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 48240br1 2010e1 30150z1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations