Cremona's table of elliptic curves

Curve 60333d5

60333 = 3 · 7 · 132 · 17



Data for elliptic curve 60333d5

Field Data Notes
Atkin-Lehner 3+ 7- 13+ 17- Signs for the Atkin-Lehner involutions
Class 60333d Isogeny class
Conductor 60333 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ -5.2450556172611E+20 Discriminant
Eigenvalues  1 3+  2 7-  4 13+ 17-  4 Hecke eigenvalues for primes up to 20
Equation [1,1,0,1904796,-435407643] [a1,a2,a3,a4,a6]
Generators [11172:550255:27] Generators of the group modulo torsion
j 158346567380527343/108665074944153 j-invariant
L 8.5052754923295 L(r)(E,1)/r!
Ω 0.09329837156153 Real period
R 5.6976312596418 Regulator
r 1 Rank of the group of rational points
S 0.99999999997733 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4641b6 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations