Cremona's table of elliptic curves

Curve 60450h4

60450 = 2 · 3 · 52 · 13 · 31



Data for elliptic curve 60450h4

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 13+ 31- Signs for the Atkin-Lehner involutions
Class 60450h Isogeny class
Conductor 60450 Conductor
∏ cp 48 Product of Tamagawa factors cp
Δ -1.3709851784698E+19 Discriminant
Eigenvalues 2+ 3+ 5+  4  0 13+ -6  8 Hecke eigenvalues for primes up to 20
Equation [1,1,0,353125,-158636625] [a1,a2,a3,a4,a6]
j 311664372950033999/877430514220650 j-invariant
L 1.3760674537956 L(r)(E,1)/r!
Ω 0.11467228730744 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 12090bm4 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations