Cremona's table of elliptic curves

Curve 61200ce1

61200 = 24 · 32 · 52 · 17



Data for elliptic curve 61200ce1

Field Data Notes
Atkin-Lehner 2+ 3- 5- 17+ Signs for the Atkin-Lehner involutions
Class 61200ce Isogeny class
Conductor 61200 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 110592 Modular degree for the optimal curve
Δ -140992360182000 = -1 · 24 · 315 · 53 · 173 Discriminant
Eigenvalues 2+ 3- 5- -1 -1 -4 17+  1 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2955,574625] [a1,a2,a3,a4,a6]
Generators [16:729:1] Generators of the group modulo torsion
j -1957215488/96702579 j-invariant
L 5.0222521870651 L(r)(E,1)/r!
Ω 0.48202468800921 Real period
R 1.302384585245 Regulator
r 1 Rank of the group of rational points
S 1.0000000000198 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 30600z1 20400r1 61200cp1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations