Cremona's table of elliptic curves

Curve 61504ce1

61504 = 26 · 312



Data for elliptic curve 61504ce1

Field Data Notes
Atkin-Lehner 2- 31- Signs for the Atkin-Lehner involutions
Class 61504ce Isogeny class
Conductor 61504 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 40960 Modular degree for the optimal curve
Δ -30505984 = -1 · 210 · 313 Discriminant
Eigenvalues 2- -2  3 -1  4 -2 -6  1 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-2769,-57017] [a1,a2,a3,a4,a6]
Generators [96730:2686181:125] Generators of the group modulo torsion
j -76995328 j-invariant
L 5.3914368306488 L(r)(E,1)/r!
Ω 0.32906024164937 Real period
R 8.1921729640534 Regulator
r 1 Rank of the group of rational points
S 1.0000000000518 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 61504v1 15376l1 61504cb1 Quadratic twists by: -4 8 -31


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations