Cremona's table of elliptic curves

Curve 61504g1

61504 = 26 · 312



Data for elliptic curve 61504g1

Field Data Notes
Atkin-Lehner 2+ 31+ Signs for the Atkin-Lehner involutions
Class 61504g Isogeny class
Conductor 61504 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 714240 Modular degree for the optimal curve
Δ 894321072475734016 = 220 · 318 Discriminant
Eigenvalues 2+ -1  3 -1 -3 -5  3  7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-278049,33476257] [a1,a2,a3,a4,a6]
Generators [-5757:246016:27] Generators of the group modulo torsion
j 10633/4 j-invariant
L 5.232288204327 L(r)(E,1)/r!
Ω 0.25591408357168 Real period
R 1.7037906275025 Regulator
r 1 Rank of the group of rational points
S 0.99999999998152 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 61504bg1 1922a1 61504p1 Quadratic twists by: -4 8 -31


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations