Cremona's table of elliptic curves

Curve 61800i2

61800 = 23 · 3 · 52 · 103



Data for elliptic curve 61800i2

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 103- Signs for the Atkin-Lehner involutions
Class 61800i Isogeny class
Conductor 61800 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 238702500000000 = 28 · 32 · 510 · 1032 Discriminant
Eigenvalues 2- 3+ 5+  0 -4  2  6 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-85908,9691812] [a1,a2,a3,a4,a6]
Generators [-132:4326:1] Generators of the group modulo torsion
j 17529502938064/59675625 j-invariant
L 4.8185772250254 L(r)(E,1)/r!
Ω 0.55879719611331 Real period
R 2.1557808710823 Regulator
r 1 Rank of the group of rational points
S 1.0000000000505 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 123600k2 12360c2 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations