Cremona's table of elliptic curves

Curve 61920bb1

61920 = 25 · 32 · 5 · 43



Data for elliptic curve 61920bb1

Field Data Notes
Atkin-Lehner 2+ 3- 5- 43- Signs for the Atkin-Lehner involutions
Class 61920bb Isogeny class
Conductor 61920 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 184320 Modular degree for the optimal curve
Δ 7617321000000 = 26 · 311 · 56 · 43 Discriminant
Eigenvalues 2+ 3- 5- -2 -6  2  4  6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-32097,-2209336] [a1,a2,a3,a4,a6]
j 78380771974336/163265625 j-invariant
L 2.1403709281898 L(r)(E,1)/r!
Ω 0.35672848830797 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 61920r1 123840er1 20640p1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations