Cremona's table of elliptic curves

Curve 62400x1

62400 = 26 · 3 · 52 · 13



Data for elliptic curve 62400x1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 13- Signs for the Atkin-Lehner involutions
Class 62400x Isogeny class
Conductor 62400 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 741888 Modular degree for the optimal curve
Δ -1563010754464972800 = -1 · 241 · 37 · 52 · 13 Discriminant
Eigenvalues 2+ 3+ 5+  0 -4 13-  0 -1 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-575393,-178246623] [a1,a2,a3,a4,a6]
j -3214683778008145/238496514048 j-invariant
L 1.5534687336386 L(r)(E,1)/r!
Ω 0.086303818516232 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 9 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 62400gw1 1950f1 62400dg1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations