Cremona's table of elliptic curves

Curve 6336bx3

6336 = 26 · 32 · 11



Data for elliptic curve 6336bx3

Field Data Notes
Atkin-Lehner 2- 3- 11+ Signs for the Atkin-Lehner involutions
Class 6336bx Isogeny class
Conductor 6336 Conductor
∏ cp 1 Product of Tamagawa factors cp
Δ -513216 = -1 · 26 · 36 · 11 Discriminant
Eigenvalues 2- 3-  1  2 11+ -4  2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-281532,-57496282] [a1,a2,a3,a4,a6]
Generators [256809151821554432631344305:6030326746850354449619335049:278049407767690881341375] Generators of the group modulo torsion
j -52893159101157376/11 j-invariant
L 4.4667634645865 L(r)(E,1)/r!
Ω 0.10363050574259 Real period
R 43.102785541562 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 6336y3 1584p3 704k3 69696fw3 Quadratic twists by: -4 8 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations