Cremona's table of elliptic curves

Curve 6336z4

6336 = 26 · 32 · 11



Data for elliptic curve 6336z4

Field Data Notes
Atkin-Lehner 2+ 3- 11- Signs for the Atkin-Lehner involutions
Class 6336z Isogeny class
Conductor 6336 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -4196908007424 = -1 · 217 · 37 · 114 Discriminant
Eigenvalues 2+ 3-  2  0 11- -2 -6  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,3156,-71120] [a1,a2,a3,a4,a6]
Generators [53:495:1] Generators of the group modulo torsion
j 36382894/43923 j-invariant
L 4.5276107960381 L(r)(E,1)/r!
Ω 0.41808622728703 Real period
R 1.3536713542975 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 6336bz4 792d4 2112m4 69696cd3 Quadratic twists by: -4 8 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations